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Chapter 1

Theoretical Development of
Gain Modification

1.1 Introduction

We present a backward propagation network which simultaneously modifies
the gain parameters and the synaptic weights. The additional complexity
is minimized by the fact that the error signal for modification of the gain
of a neuron is proportional to the ordinary error signal for the incoming
synaptic weights to the neuron. For a given neuron, the proportionality
factor is the reciprocal of its gain. Thus, only the ordinary error signal
must be propagated. The input to a synapse, which multiplies the error
signal in the standard modification rule for synapses, is replaced by the net
input to the cell in the gain modification rule. We also demonstrate that our
algorithm can be viewed - ~ gradient descent in rescaled synaptic vectors
with effective time-depen. n* =tep-constants which depend on both the
magnitude of the gains and .. magnitude of the ordinary synaptic vectors.
In this paper, we show that the effect of gain modification by this algorithm
can be used to enhance the improvements in convergence rate obtained
by the use of high momentum in ordinary synaptic modification. These
improvements occur without degrading the generalization capabilities of
the final solutions obtained by the network.




1.2 Review of Notation for Standard Back-
ward Propagation

We begin with a short summary of the notation which we have used for
backward propagation in our previous work (Bachmann, 1988) [1]. The no-
tation differs somewhat from that used by Rumelhart, Hinton, and Williams
(1986) [6] and Werbos (1988) [7]. ¥or simpiicity, we consider a three-layer
network. A typical network is illustrated in figure 1.1.

Qutput Layer

“Hidden" Layer

Input Layer

Figure 1.1: The o, label the output units, the h; label the “hidden
units”, and the f; label the input units. Only some of the connections
are shown. Superscripts on synaptic weights denote layer index.

The feedforward equations are defined by:

z = %wf})fjvhsbf” (1.1)
i=1

he o= Pz AN (1.2)

o= S ulhr g (1.3)
i=1

of = Pui), (1.4)

o} is the output of the kth unit in the output layer, k] is the output of the
ith unit in the hidden layer, and f; is the valuc of the jth input. s denotes




the pattern index. Additionally, recall that y§ is the total input to the kth
output unit, and z{ is the total input to the ith hidden unit. ¢§1) is the bias
for the ith cell in the hidden layer, and 4553) is the bias for the kth cell in
the output layer. ¢(z;A) is the sigmoid input-output function defined by:

1

Y(z;4) = 15 e

(1.5)
We have introduced explicitly the gains /\f) of the kth cell in the last layer
and /\El) for the ith cell in the hidden layer. ! ? &,, the energy ot pattern s,
is given by:

N, 1 .

& =2 5(op— )" (1.6)

k=1
A pattern gradient, which is used to modify the synaptic weights following
the presentation of each pattern to the network, is computed from the en-
ergy &,. The backward propagation method is thus only an approximation
to gradient descent since the true Liapunov function is really:
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z—: —)? (1.7)

To make a connection with Rumelhart’s delta error signal notation
(Rumelhart, 1988) [6], we note that by defining partial derivatives with
respect to the “net”, or net input to a cell, we have®:
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¢
6(2) _ d
oyi
_ 96,00}
9o} Oyi
= =2P(o} - )0} (1 - 0}) (1.8)

'In Rumelhart’s original model there is no gain parameter A (A = 1). Although initially
all gains are set to 1, our proposed model allows the gains to vary individually.
2Hopfield (1984) [3] has used a gain parameter in the continuous version of his model to
study the effect of changing the character of the nonlinearity of the input-output function.
3We have added superscripts to the error signals for greater clarity.
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N2
= PR - k) Y (0 A Poi(1 - o)wl.  (19)
k=1
This allows one to write:
s = Apz(1 Z 5Py (1.10)

The synaptic modifications are proportional to the negative gradient:

¢,

aw,(;)

3€a ayi

= -7 1.11
ayp Bw,(:) ( )

n a¢,
aw,(]l)
65, oz

= 3 D (1.12)

Aa(w)(cf)) = —-n

Therefore, with the above definitions for 6(,c and 6

« » €quations 1.11 and
1.12 become: *

Awdy = n6lh; (1.13)
Afwl) = 1S, (1.14)

Note that equation 1.10 defines the backward propagation of the error sig-
nals. Recall also that in standard backward propagation, a “momentum”
term is often used at each step of the modification procedure in the gradient
descent search for the minimum. Heuristically, the momentum term can

4As in Rumelhart et. al. (1986) 6], the biases are modified by the same procedure;
however, the input for biases is defined to be unity.




be viewed as a means of increasing the step-constant when the curvature
of the energy surface is low and several successive modifications have the
same sign (Jacobs, 1988) [5]. The momentum term consists of adding a
small amount proportional to the previous modification, so that the actual
modification at time step t for the nth layer of synaptic connections is:

n a¢, n
ks

where s(t) denotes the index of the pattern presented at time step t and
K is a positive constant less than 1. One can also write this in a slightly
different form:

t

Ayn(wi) = —n 2 ag,&; K (1.16)

v=0 awh

This form is more suggestive in showing that the use of a momentum term
is equivalent to a discrete approximation to a temporal integral average
with an exponentially decaying kernel. The kernel has the effect of em-
phasizing the influence of the patterns most recently presented, assigning
exponentially less weight to those patterns presented earlier in time.

1.3 Simultaneous Modification of Gain Pa-
rameters and Synapses by a Backward
Propagation Algorithm

In this section, we consider the possibility of modifying the gain parame-
ters and the synaptic weights simultaneously. To accomplish this, we have
formulated a backward propagation procedure which modifies the gain pa-
rameters in the network in a manner similar to the method used for the
synaptic weights. The procedure can take advantage of quantities already
calculated in the ordinary backward propagation procedure for the synaptic
weights, thus minimizing the additional complexity. The error signal for
the gain of a particular neuron is proportional to the ordinary synaptic er-
ror signal for the incoming synaptic weights connected to the neuron. The
proportionalily factor is just the reciprocal of the neuronal gain. Addition-
2lly, the input to a particular synapse, which multiplies the error signal in




the standard synaptic modification formula, is replaced by the net input to
the neuron for the modification of its gain.

We note in passing that other work has been done on gain modification
procedures, for example Kruschke (1988) [4]; however, Kruschke’s proce-
dure does not use the gradient with respect to the gain. Rather, gains are
modified in the context of a competitive learning scheme, which is com-
bined with backward propagation modification of the synaptic weights. In
contrast, our scheme uses a backward propagation procedure for both gains
and weights, incorporating respectively the gradients with respect to the
gains and the weights.

To derive our model, we begin by defining rescaled error signals ’7(2) and

753) in terms of the error signals for the synaptic weights in equations 1.8

and 1.9:

) 1
751:) = @) s(k)

(1.17)
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st - (1) Ysi

1 {2 9¢, 9o} 9y; Ok}
)“(,1) io; Aoy Ay; Oh oz}
Na 2 2
= —R(1 =R S (o) — AP oy(1 — o} jwid. (1.18)
k=1

Given these definitions, we may write a backward propagation equation for
the rescaled error signals '7,(3) and ’751) by combining equations 1.17 and 1.18.

Alternatively, we could have derived this formula by simply replacing 65:)




by '\9)’75:) and 5,{';1) by /\,(1)'7(” in equation 1.10:

N2
A = r1 - ) AP W
k=1

If we ohserve that:

80;': 2 s
3gr = % okl o)
then we have:
aoi s 9 s
8)&2) = ykok(l - ok)

, 1 do

Ye @) a,,0

A ay;
The same line of reasoning also allows us to write:

oh! 1 9k

oA~ Ty oz

Therefore, we may write:
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“ oA

o do; 9¢E,
oA 9o
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1 96,
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AN =

= —ar

(1.19)
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(1.22)

(1.24)




where we have used equations 1.21 and 1.22 to write the derivatives with
respect to the gains in equations 1.23 and 1.24 in terms of derivatives with
respect to the net inputs y; and z] to the kth cell in the output layer
and the ith cell in the hidden layer respectively. Using the definitions in
equations 1.17 and 1.18, we can recast equations 1.23 and 1.24 as:

“2) 2 3 -
AN = aﬁgk)yk (1.25)
A,A:” = a’yif)xf (1.26)

For comparison with equations 1.13 and 1.14 describing synaptic modifica-
tion, we note that in equations 1.25 and 1.26 depicting gain modification,
the ordinary error signals defined in equations 1.8 and 1.9 have been re-
placed by the rescaled error signals defined in equations 1.17 and 1.18, and
the signal input to a particular incoming synapse (either hy or f; depend-
ing on the layer) has been replaced by the corresponding total integrated
potential to the cell, 1.e. y; or z7 depending on the layer. Since the rescaled
error signals, ~, are proportional to the ordinary synaptic error signals, §,
we need only propagate the ordinary error signals é and obtain the rescaled
error signals locally by dividing by the cell gain. Equivalently, we can view
the error signal as a quantity which initiates changes in the input-output
characteristics of the neuron at the same time that it modifies the incoming
synapses to the neuron. From this perspective, the modification rule for
a synapse couples the ordinary error signal and the input to the incoming
synapse with coupling constant n, while the gain modification rule couples
the ordinary error signal and the net input to a cell with coupling constant

i

NOE The only difference is the strength of the coupling, and, in fact, since

the gain parameter is a more sensitive parameter than the synaptic weights,
we choose the initial coupling for the gains, a, to be an order of magnitude
smaller than that of the synapses in the simulations described here. * Al-
ternatively, we will show in the next section that one can view simultancous
gain and synaptic modification as a gradient descent in rescaled synapses
with effective step-constants which are dependent on the gain and magni-
tude of the ordinary synaptic vectors and are direction-dependent in the

The gaing are all set to one initially. Therefore, the order of magnitude of the initiad
coupling is determined by . Even thongh the gains are chozen to be initially the same,
syminetry is =till broken by choosing the initial synaptic weights randomly in a small
hypercube.

9




synaptic vector space. From this perspective, the effective step-constant
is now also time-dependent through its dependence on the gain and the
magnitude of the ordinary synaptic vectors.

1.4 Gain Modification Viewed as an Effec-
tive Time-Dependent Step-Constant

In developing our theoretical arguments, it will be easiest to consider the
effects of gain modification on ordinary backward propagation without mo-
mentum. It will be seen that the addition of momentum will not alter the
development here. To simplify matters, we adopt a notation which includes
synaptic weight vectors and biases in the same vector. We also change the
notation to a slightly more general form than that used in sections 1.2 and

1.3. For the ith cell in the nth layer, ® we define:

W = el)
Fime = (fine ) (1.27)

where the input to layer n, ﬂ")" = 5n-1s s (just the output vector of
the previous layer. 7 The jth component of u7‘-"), w'(;), then is just the
connection from the jth cell in the (n-1,th layer to the ith cell in the nth
layer. This allows us to writc the output for pattern s of the ith cell in the
nth layer as:
(m)s _ 1
14 =AW Fe

In the case of nonmodifiable gains set equal to one, it is apparent that we
may view the norm of the vector W‘i(") as the gain. This follows by rewriting
equation 1.28 as:

() _ 1

o; " = — 1.29
' 14 e N Foe (1.29)

SThe input layer is defined to have the index n = 0.
"To compare the notation for neuron activation used earlier for a three layer system,
f*, A", 0°, with the current notation, we see that the inputs to the network woull be

j“"‘ = 5190 = f* hidden unit outputs would be ﬂ?'" =50 = h* and the last layer
output would be f13)# == 52he = 5,

0




Here Wf(") is a unit vector in the direction of W . This leads us to ask if

3

modifying the gains, )\E"), is truly advantageous. To answer this question,
we will need to define rescaled synaptic vectors according to:

a™ = AWl (1.30)
Note that with this definition equation 1.28 becomes:
(e _ 1
o; " = - ey (1.31)

Since ﬁf") is just a rescaling of the synaptic vector Wi("), we can ask how this

vector changes when we modify W‘-(") and AS") separately. In particular, we
will find it useful to consider the changes in ﬁ.’f" along the direction of z'[f")
and those in the hyperplane perpendicular to ﬁ.’f"). We denote these two
components by (A,&f"))” and (A,af"))L. We also define 3™ to be a unit
vector in the direction of (Aﬂ’f"))l in the hyperplane orthogonal to aﬁ"). If
the changes in AS") and W,.("), and thus in 11',("), are sufficiently small, then
we may write:

ALY = A AW 2 APAT L WA A, (1.32)
The change A,Wi(") can be rectified into two orthogonal components: &

A,W'(n) = —nVW(n) 6.’
- _r,(w‘.(")(ﬁf}")-vw;n,gﬂ)+a§")(ﬁ§"’-vwme)) (1.33)

Note that A,)\‘(-") is just:

AN = —aaaf(:) (1.34)
However, we can write ﬁ:—) in terms of the component of VW}"’ES along
W,-("). To see this, observe'that we may write:
ag o Bl - F)
XY  (a™ . Fimey  aaM
N SO I OR (1.35)
o(al . Firls)
8Here we neglect momentum.
11




At the same time, note that:

. A
W Vo me = — o
win 3| W‘-(") |l

0 a(@™ - Fri)
A(@™ . Fimey 9| W™ |
_ _j;ag_ﬁ_ AP ) L Flm).s (1.36)
(@™ - Fn)e)

From equations 1.35 and 1.36, we obtain:

aEa _ IW‘(") l
M

Wi Vemé (1.37)

Having derived equation 1.37, we can now combine it with equations 1.33
and 1.34 to rewrite equation 1.32 as:

7 (n)
n n [0 4 lW‘ ‘ ~(n sy (0
AT = - (14 e R[CRE AT bl
+ (3. Vpm €)™}, (1.38)

where we have used the fact that 12'(") = W‘("). This allows us to write:

( (Adn))ll ) ~ /\(") 1+ %(LP)VT(L(:)_)[)Z 0 ‘(") ’ VW.'(")ES (1 39)
(@aay, )~ 0 1 8 V€ '

We can recast this equation in terms of gradients with respect to EE") by
converting the gradients with respect to Wi(") . In doing so, we note one
subtlety about the gradients which were used to derive equation 1.39. The
gradient, V - &°, which appears in ordinary backward propagation (equa-
tion 1.33, and therefore in equation 1.39, is a vector of partial deriva-

tives evaluated at constant )\f"). We could denote this explicitly by writing
(Viym&®) . Similarly, in the modification of the gains (equation 1.34),

£

5‘%5(7‘3 is calculated as a partial derivative to be taken at constant If’i(") which

we could write as (ﬁf’-)wm. In fact, equation 1.37 is an equation relating

()
‘

12




(E‘i—f,‘,—))wgn) to (V 5m€°) (. Because the gradient of the energy with respect
to W‘i("), (Vg &) m), is calculated for fixed AS"), we may easily express it

in terms of the gradient with respect to 11'5"), (Vﬁ(,.)E’)A(_n). We see that the
jth component of the two gradients are related bsr: '

3¢, duf}) 3¢,
(BW-(,.") her = (G @he (5 eahe
[ 13 L¥]
n 868
Al )(—_au("’)*f"’ (1.40)

We write this compactly as:

(Vwi(n)fa)/\'(_n) = AE")(VG(n)f’)A(_n). (1.41)

>

2>

(n) . Va(n)E’ )

This allows us to rewrite equation 1.39 as:
(
Sﬂ) . Va(n) Es

—(n o W'(")
((A,gg i )z_n(m)z 1+ (5 o
(A7) L 0 1
(1.42)

We see that a backward propagation algorithm which simultaneously
modifies the synaptic weights and the gains is equivalent to a gradient
descent in the rescaled synapes ug-') with time-dependent step-constants.
In the direction of the rescaled synaptic vector, the step-constant now has
a quadratic dependence on the magnitudes of the gain and the ordinary
synaptic vector, and in the hyperplane perpendicular to the direction of
the rescaled synaptic vector, the step-constant has a quadractic dependence
only on the magnitude of the gain. From equation 1.42, we obtain:

m o= (M) e W P (1.43)

no= n(AM)2. (1.44)

The fact that the step-constants are positive-definite ensures that we
always take steps in the direction opposite the gradient; therefore, we can

classify this approach as a gradient descent algorithm. Momentum can be
added to the above argument without loss of generality, since it simply adds

13




a small amount proportional to the most recent change; the only difference
is that now the step-constants are time-dependent.

We note that the derivation of our model, resvlting in equation 1.42,
depended on the approximation in equation 1.32 that we take sufficiently
small steps in changing the ordinary synapses and gains. If the synapses
grow to be very large, it is possible that this approximation may break
down. However, depending on our choices of n and «, the approximation
will be valid for at least part of the evolution of the network and certainly
during the early development. In a continuum model, the derivation would
be exact, provided that we replace the single pattern energy £, with the
total energy over all patterns £ = 57, £,. For such a continuum model, we
would replace equation 1.32 with:

DO R A Ay dA")
du; - ( i i ) — A‘(") LB W‘,(") A (1.45)
dt dt dt at

Similarly, we would replace equation 1.33 with:

aw ™
dt

NV mé
= — (W Vo me) + 076 Vpme)  (1.46)

and equation 1.34 with:
M o

= —a——. 1.47

In equations 1.35, 1.36, and 1.37, we would need to sum both sides of the
equation over the pattern index s, to obtain the appropriate relationships
for the total energy £. In the end, we would obtain an exact nonlinear
differential equation of the form:

da™ LAY I VY

— n 1+ & —tT 0 Uy gl

( ((dai’n‘>))“ ) = —n(x{")? ( "(0*5 ) . ) ( n o ) (1.48)
at /L !

from which we would obtain the effective time-dependent step-constants in
equations 1.43 and 1.44.

14




1.5 Impact of the Effective Tiine-Dependent
Step-Constant

In the previous section, we derived the form of the effective step-constant
and determined that n grows quadratically as a function of the magnitudes
of the ordinary synaptic vector and the gain and that 5, the step-constant
in the direction of change of ﬁf"), grows quadratically with the gain. It may
be particularly important in the early stages of synaptic development when
Z™ . F(" is small and o{™"* can be approximated linearly as: °

o(n)'a = 1
1+e

s —a( F e
1
9 _ ,7’(") . Fln).s
1 Z") . Fn).e
v T T

&

~ (1.49)
In this regime, therefore, the error signals can be approximated as poly-
nomial functions of ﬁf") - F("e and the the quadratic dependence of the
step-constants on | W™ | and A{™ is likely to be significant. 1°

In the next chapter, we will demonstrate that the use of high momen-
tum leads to shorter convergence time. When gain modification is combined
with high momentum, there is further improvement in convergence time.
Empirical results suggest that when high momentum is used shorter con-
vergence times result because the synapses develop more rapidly. When
gain modification is added to high momentum, the rate of development of

the effective synapses, u,-;‘ , is accelerated further.

9The initial synaptic weights are small: between -0.1 and 0.1, and the connectivity of
the networks we considered in the next chapter was small. Additionally, the input patterns
were confined to the unit disk. Therefore, we can expect that this approximation will be
valid at the beginning of synaptic development.

19Fyrthermore, note that the ordinary error signals, as shown earlier, are explicitly
dependent on the gains. This may also play a significant role in the time evolution of the
network.
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Chapter 2

Experimental Benchmarks for
Gain Modification and

Momentum

2.1 Momentum and the Concentric Circle
Paradigm

We describe below some benchmarks for the concentric circle paradigm. In
this paradigm, we train a backward propagation network with two inputs
representing the x and y coordinates of a point in the unit disk. Within the
unit disk, there are two pattern classes separated by a circular boundary
at r = 1. This divides the class into two regions, an inner disk and an
outer annulus, both of area 7. For the single outpnt unit, the target output
for patterns in the outer annulus is 1 and for patterns in the inner disk is
0. In the simulations described below, the network had one hidden layer
of 6 hidden units, and the network was trained on 40 patterns randomly
selected from the unit disk. For each setting of the parameters, we repeated
the experiment 90 times starting the weights at different random pointsina
small hypercube; each initial weight was chosen randomly betweeen 0.1 and
-0.1. Additionally, a different randomly selected set of 40 patterns was used
in each experiment. In all experiments the step-constant in the first layer
of connections was two times the size of the step constant in the second

layer. We have found that this accelerates the learning procedure, a fact

16




which is consistent with what Becker and Lecun (1988) (2] have observed.
In their work, they determined that the step constant should be scaled by
a factor of 7}—\,—:, where N, for a given layer of synapses, is the number of
connections in that layer onto a neuron in the next layer of neurons. If this
scaling is a general principal, then, for our particular network architecture,
we should have increased the step-constant in the first layer of synapses
by a factor of v/3. However, by choosing a factor of 2, we are at least
approximately close to what Becker and LeCun found to be ideal for the
binary input paradigm which they investigated. As of yet, we have not
studied in great detail the scaling of step-constants as a function of the
number of synaptic connections in a layer. However, for consistency, in the
simulations described in the next section, we chose a, the step-constant
for gain modification, to be twice as large for neurons in the hidden layer
compared to its value in the output layer.

In one set of experiments (series ab), we took the step-constant to be
n = 0.4. The momentum was varied by increments of 0.1 from 0.0 to 0.9,
and 90 experiments were performed at each value of momentum. The mean
and standard deviation of convergence time are plotted for each value of
momentum in figure a.1 of appendix a. Only those experiments converging
within 20000 epochs ! ? were used to compute the means and standard
deviations. From the graph, it is apparent that the mean convergence
time decreases with increasing momentum. The large error bars, however,
are somewhat misleading and tend to underemphasize the rather dramatic
improvement in convergence time at high momentum. The size of the errors
is typically comparable to the mean and is due to the fact that there are
a number of trials for which the convergence time is several times larger
than for the majority of the trials. Given the limited number of trials, 90,
this tends to make the error bars large and to mask the improvement of
the central cluster of trials. With increasing momentum, the central cluster
of convergence times becomes narrower and moves toward shorter times.
We illustrate this point in a series of graphs for series ab, figures a.4- a.13,
ordered by momentum, in which we plot a histogram of number of trials
converging vs. convergence time.

L An epoch is defined to be a complete presentation of the data set sequentiaily. How-
ever, we modify the network following the presentation of each pattern.

2In our experiments, we defined the convergence of a network to occur when the network
output was within 0.1 of the target output for all training patterns.
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It is interesting to note that at loov momentum, there i. evidence of
at least two distributions in the convergence times. These two clusters
gradually move to shorter convergence times and merge to form a single
cluster at low convergence time.

Figure 4.2 of appendix a shows the fraction of trials converging within
20000 epochs. Over most of the range of k, that is for kK between 0.0 and
0.8, the percentage of trials converging is in the range of~ 89 — 98%. At
very high momentum, however, x = 0.9, the percentage of trials converg-
ing drops to 79%. At the same time, the amount of generalization by the
network is not momentum dependent. This is readily apparent in figure
a.3 of appendix a, in which we plot the mean and standard deviation of
the fraction of 5000 randomly selected test patterns which were correctly
identified by the network after the network converged. We also graph the
fraction which could be correctly identified by the network’s “best guess”,
th~t is the output which the network was closest to, 0 or 1. Means and stan-
dard deviations are depicted only for those trials which actually converged
within 20000 epochs. As indicated by the small error bars, the generality
of the solutions varies only weakly across trials for a given value of mo-
mentum. Furthermore, as we have noted, the mean generality is constant
across momentum. We expect, therefore, that solution generality should
not have a strong dependence on convergence time.

We can conclude also that the length of convergence time has very little
to do with the generality of the solution reached for this paradigm; we
infer this from the fact that the error bars are small in the generalization
graph in figure a.3. It is interesting to ask, then, which features might
distinguish the network solutions with long convergence time from those
with short convergence time. In appendix b, we have produced a scatter
plot of the mean and standard deviation (over the neurons in a particular
solution) of the magnitude of synaptic vectors vs. convergence time for
series ab. As defined in the previous chapter, each of these vectors includes
both the ordinary synapse and the bias. For each layer, there is a set of 3
graphs, ordered in increasing momentum, one at zero momentum (x = 0},
one at intermediate momentum (x = 0.5), and one at high momentum
(k = 0.9). The graphs for layer 2 are in figures b.1- b.3, and those for layer
1 are in figures b.4-b.6. We note that as the momentum is increased, the
longer convergence times move toward the cluster of convergence times at
shorter times, this region of the graph becomes more dense, and itself moves
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simultaneously closer to the origin along the time axis. As a consequence,
as the momentum is increased and the number of trials converging within
the first several thousand iterations becomes more dense, we observe that,
as a population, the synaptic uorms rise more rapidly as a function of
convergence time.

2.2 Gain Modification Combined with High
Momentum Synaptic Modification

We have seen from the histograms of number of trials converging vs. con-
vergence time for series ab in appendix a, that high momentum can dra-
matically improve the convergence rate for the majority of the trials. With
this in mind, we combined the gain modification procedure described ear-
lier with high momentum synapiic modification. We chose «, the gain
moaification step-constant, to be an order of magnitude smaller than the
synaptic modification step-constant, n, since the gain is, in general, a more
sensitive parameter. In series ag, we examined three different cases: no
momentum (sag3), high momentum (sag2), and high momentum with gain
modification (sag4,sag5,sag6). In each run, we performed 500 experiments.
We summarize the parameters chosen for these runs: 3

Run Number 7 K «a
sag3 0.3 0.0 0.000
sag?2 0.3 0.8 0.000
sagd 0.3 0.8 0.020
sag4 0.3 0.8 0.038
sagb 0.3 0.8 0.060

In figure c.1 and c.2 of appendix c, we plot the percentage of trials con-
verging vs. convergence time on two different time scales for the runs listed
above. Detailed histograms of sag2, sag3, and sag4, comparing the three
cases on two different time scales, the first 6000 epochs (figures ¢.3-c.5),
and the full 26000 epochs (figures c.6~c.8), are also provided in appendix c.

3 As noted earlier,  — 29 and a — 2« for che first layer of synapses and the gains of
the hidden units respectively. The values for n and « in the table are those values used in
the second layer of synapses and the gains of the output units respectively.
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Examining the graphs in figures c.1 and c.2, we see that without momen-
tum or gain modification, 80% of the simulations converge within ~ 10000
epochs. High momentum clearly leads to much more rapid convergence,
for we obtain the 80% level within ~ 1500 epochs. When gain modifica-
tion is added to high momentum, we achieve the 80% level within ~ 500
epochs. This is 3 times faster than high momentum without gain modifi-
cation and 20 times faster than the bare algorithm. This is a tantalizing
result, for on a more complex problem where longer convergence times are
more probable, reaching the 0% level in a third of the time (compared
with high momentum alone) could be quite significant. Asymptotically,
the runs in which gain modification was combined with high momentum
(sag4, sagh, sagb) also achieved the highest percentage of trials converging,
~ 95-98%. For high momentum without gain modification, the asymptotic
convergence rate was slightly lower at ~ 93%, and for the bare algorithm,
even less at ~ 90%.

A comparison of the synapses obtained in these three cases is illustrated
in the graphs in appendix d. Figures d.1, d.2, and d.3 graph the the synap-
tic vector norm * in layer 2 vs. convergence time. Figure d.1 is the no
momentum case {sag3), figure d.2 the high momentum case (sag2), and
figure d.3 the high momentum with gain modification case (sag4). As a
population there is a trend toward a longer synaptic norm in layer 2 as
time increases when the bare algorithm is used (figure d.1). This increase
in synaptic norm occurs more rapidly when high momentum (figure d.2)
is added to the bare algorithm. When we combine high momentum with
gain modification, (figure d.3) there is some depreusion of the size of the
synaptic norm. In this case, however, the length of the effective synap-
tic vector, or rescaled synaptic vector, depicted in figure d.4 in appendix
d, develops much more rapidly than in the high momentum case without
gain modification. This is due to the fact that the gains in this layer as a
population are typically ~ 1.4-2.5 (see figure d.5 of appendix d where the
gains are plotted as a function of synaptic norm for layer 2). This seems to
speed the process of learning, since solutions with longer synaptic norms
are achieved without the requirement of the synapses’ becoming large; a
single multiplicative factor, the gain, hastens the change of the length of
the synaptic vector.

4 As before, this vector includes both the ordinary synaptic vector and the bias.
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In layer 1, a similar trend obtains (figures d.6- d.9). * As in layer 2,
longer effective synapses in layer 1 are achieved more rapidly by modifying
the gain parameter. When we compare figures d.6 and d.7, we see that
the increase in E(| W,-(l) |) occurs more rapidly as a function of convergence
time for the majority of the population as we go from no momentum to high
momerntum. ® However, the synaptic norms (figure d.8) are not significantly
depressed in the case of high momentum with gain modification; this leads
to rescaled synaptic vector norms which are much larger than the other two
cases (see figure d.9). 7 In figure d.8, the ordinary synapses are probably
not significantly depressed in layer 1 because the step-constant was twice
as large for layer 1, as we noted earlier.

The mean gain is plotted versus mean synaptic voctor norm in figure
d.10. The gains are principally between 1.0 - 2.0 in this layer and act to
accelerate the development of the length of the effective synaptic vectors.

Rapid development of the synaptic vector norms appears to be the factor
which decreases the convergence time when high momentum is used, and
this effect is further enhanced when gain modification is used with high
momentum. We note also for completeness that the use of gain modification
did not in any way degrade the generality of the solutions obtained.

2.3 Future Directions

In the work described above, we have shown how gain modification can
enhance the improvements in convergence rate obtained with high momen-
tum in synaptic modification for a simple concentric circle paradigm. For
completeness, we plan to do simulations in which gain modification is used
without momentum. In addition, further analysis and reduction of the data
already obtained is in progress. We plan to establish similar benchmarks for
higher dimensional problems, for instance for higher dimensional concen-
tric hyperspheres. This will allow a comparison of how the improvements
obtained with gain modification scale with dimensionality. Finally, we will
establish benchmarks for gain modification for more complex problems such

5 As before error bars represent the standard deviation with respect to the neurons in
the layer.

SE is the expected value, or mean.

"Note that the scale of the graph in figure d.9 is different from the previous graphs.
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as parity.
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Appendix a
Graphs of series ab: Convergence Properties as a Function of
Momentum
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Appendix b
Graphs of series ab: Magnitude of Synaptic Vectors vs.
Convergence Time
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Appendix ¢
Graphs of series ag: Convergence Properties for
(1)No Momentum, (2) High Momentum,
(3) High Momentum with Gain Modification
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Appendix d
Graphs of series ag: Magnitude of Synaptic Vectors vs.
Convergence Time
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